Chem. Ber. 112, 1304 – 1315 (1979)

Synthese und Reaktivität von Silicium-Übergangsmetallkomplexen, XII¹⁾

Zweifach dicarbonyl(cyclopentadienyl)eisen-substituierte Silane

Wolfgang Malisch* und Wolfgang Ries

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 6. Juli 1978

Die übergangsmetall-substituierten Silane $[C_5H_5(CO)_2Fe]_2SiHR$ ($R = CH_3$, Cl) (1, 2) werden durch Metallierung von $C_5H_5(CO)_2Fe-SiHRCl$ mit $[C_5H_5(CO)_2Fe]Na$ in Cyclohexan erhalten. 1 bildet sich außerdem zusammen mit $C_5H_5(CO)_2Fe-SiH_2CH_3$ (3) bei der Umsetzung von $C_5H_5(CO)_2Fe-SiH(CH_3)Cl$ mit Natriumamalgam. CCl₄ überführt 1 und 2 rasch in die chlorierten Abkömmlinge 4 und 5, die mit AgBF₄ weiter zu den Fluorsilylkomplexen $[C_5H_5(CO)_2Fe]_2SiFCH_3$ (6) und $[C_5H_5(CO)_2Fe]_2SiF_2$ (8) reagieren. Die Struktur der bimetallierten Silane wird mit Hilfe von IR-, NMR (¹H, ¹³C, ¹⁹F, ²⁹Si)- und Massenspektroskopie bestimmt.

Synthesis and Reactivity of Silicon Transition Metal Complexes, XII¹⁾

Double Dicarbonyl(cyclopentadienyl)iron-substituted Silanes

The transition metal-substituted silanes $[C_5H_5(CO)_2Fe]_2SiHR$ ($R = CH_3$, Cl) (1, 2) are obtained via metallation of $C_5H_5(CO)_2Fe-SiHRCl$ with $[C_5H_5(CO)_2Fe]Na$ in cyclohexane. 1 is also formed together with $C_5H_5(CO)_2Fe-SiH_2CH_3$ (3) by reaction of $C_5H_5(CO)_2Fe-SiH(CH_3)Cl$ with sodium amalgam. CCl₄ rapidly converts 1 and 2 to the chlorinated derivatives 4 and 5, which further react with AgBF₄ to give the fluorosilyl complexes $[C_5H_5(CO)_2Fe]_2SiFCH_3$ (6) and $[C_5H_5(CO)_2Fe]_2SiF_2$ (8). The structure of the bimetallated silanes is determined by means of IR, NMR (¹H, ¹³C, ¹⁹F, ²⁹Si) and mass spectroscopy.

Übergangsmetall-substituierte Siliciumverbindungen stellen momentan einen aktuellen Schwerpunkt der Forschung auf dem Gebiete der Organosiliciumchemie dar. Zahlreiche chemische und spektroskopische Studien belegen das hohe Donorvermögen des Übergangsmetall-Liganden gegenüber dem IVB-Element in solchen Systemen. Allerdings ist die Frage nach dem Mechanismus der Ladungsübertragung – induktiv über die σ -Bindung oder durch ($d_M \rightarrow d_{Si}$) π -Wechselwirkung – nach wie vor kontrovers²⁻⁴).

Überraschend wenig Beachtung bei derartigen Untersuchungen fanden bislang mehrfach metallierte Vertreter, obwohl gerade bei diesen die Potenzierung des "Übergangsmetalleffekts" zu einer besonders drastischen Veränderung der Eigenschaften des Siliciumatoms führen sollte. Diese Situation resultiert in erster Linie aus dem Mangel an wirkungsvollen präparativen Methoden zur Synthese von Bismetallsilanen, denn während die Monosubstitution des Siliciums inzwischen mit allen gängigen Übergangsmetallgruppierungen realisiert wurde^{1,2,5,6}), ist der Aufbau von Spezies des Typs

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979 0009 – 2940/79/0404 – 1304 \$ 02.50/0 $R_2Si(ML_n)_2$ nur in einigen wenigen Fällen gelungen, wobei sich die Übergangsmetallsubstitution auf die Co(CO)₄-, Mn(CO)₅- bzw. (C₅H₅)₂Ti-Einheit beschränkt⁷⁻⁹). Entsprechende Systeme mit Carbonyl(cyclopentadienyl)metalleinheiten waren zu Beginn dieser Arbeit sogar gänzlich unbekannt¹⁰).

Aufgrund von Beobachtungen in der Reihe der Monometallsilane hielten wir den Versuch einer Synthese von zweifach $C_5H_5(CO)_2Fe$ -substituierten Siliciumverbindungen für besonders aussichtsreich⁵). Einerseits garantiert die hohe Nucleophilie des Anions $C_5H_5(CO)_2Fe^{\ominus 11}$ die komplikationslose Einführung dieses Liganden am IVB-Element auf dem Weg der nucleophilen Metallierung, andererseits zeichnet die hierbei resultierende Fe-Si-Bindung eine beträchtliche Stabilität aus. Darüber hinaus besitzt diese Eisengruppierung die stärkste Donatorwirkung unter den bis heute untersuchten Metalleinheiten und sollte daher den Charakter des Siliciums am wirksamsten verändern.

Um einen möglichst breiten und übersichtlichen Zugang zur gewünschten Substanzklasse zu erhalten, wählten wir als Ausgangskomponenten die leicht darstellbaren Metallsilane $C_5H_5(CO)_2Fe-SiHRCl (R = CH_3, Cl)^{5}$, für deren Metallierungsprodukt sich eine leichte Überführbarkeit in halogenierte Derivate vorhersagen läßt^{5,12}.

Präparative Ergebnisse

Die Umsetzung der Silylkomplexe $C_5H_5(CO)_2Fe-SiH(CH_3)Cl$ und $C_5H_5(CO)_2Fe-SiHCl_2$ mit etwas mehr als einem Moläquivalent Na[Fe(CO)_2C_5H_5] führt bereits bei Raumtemperatur zu den Bismetallsilanen 1 und 2. Ansprechende Ausbeuten (40–60%) werden nur erzielt, wenn man nach einer mehrfach mit Erfolg praktizierten Variante der nucleophilen Metallierung^{1,5,6)} die Alkalisalz-Eliminierung in Cyclohexan bzw. Methylcyclohexan vornimmt. Bei einer solchen heterogenen Reaktionsführung wird $C_5H_5(CO)_2Fe-SiHCl_2$ deutlich schneller metalliert als $C_5H_5(CO)_2Fe-SiH(CH_3)Cl$.

$$R = CH_{3}$$

Übergangsmetall-Anionen geringerer Nucleophilie, z. B. $[C_5H_5(CO)_3W]^{\oplus 11}$, lassen sich unter diesen Bedingungen nicht mehr am Siliciumatom einführen. Desgleichen mißlingen Versuche, die Komplexe $(Fe) - SiF_3^*$), $(Fe) - Si - [CH_2]_3Cl$ oder $(Fe) - Si(CH_3)_2Br$ gemäß Gl. (1) zu substituieren. In diesen Fällen kann zwar durch Temperaturerhöhung oder durch Zusätze, die infolge Kationsolvatation¹³) für eine Löslichkeit und Aktivierung des Metallats sorgen [THF (10%); Biscyclohexyl-18-krone-6 (1%)], eine Umsetzung induziert werden, sie liefert aber quantitativ $[C_5H_5(CO)_2Fe]_2$. Ob dieses Produkt aus einer intermediär gebildeten zweifach metallierten Siliciumspezies hervorgeht, kann bisher noch nicht zweifelsfrei entschieden werden.

Die Darstellung von 1 in einem Reaktionsschritt, ausgehend von CH_3SiHCl_2 und zwei Moläquivalenten Na[Fe(CO)₂C₅H₅], ist prinzipiell möglich, allerdings entzieht sich das

*)
$$Fe = \eta^{5} - C_{5}H_{5}(CO)_{2}Fe$$

Bismetallsilan einer Isolierung infolge eines raschen H/Cl-Austausches mit dem Dichlorsilan [vgl. Gl. (5) und (6)].

Als ein weiterer Weg zu 1 erweist sich statt dessen die Reaktion von $C_5H_5(CO)_2Fe-$ SiH(CH₃)Cl mit Natriumamalgam in Pentan bzw. Benzol, die ursprünglich mit dem Ziel konzipiert wurde, Eisensilylquecksilberverbindungen aufzubauen.

$$C_5H_5(CO)_2Fe-SiH(CH_3)Cl \xrightarrow{Na/Hg} 1 + C_5H_5(CO)_2Fe-SiH_2CH_3$$
 (2)
3

1 wird dabei stets zusammen mit dem Monometallsilan 3 erhalten. Seine relative Anteiligkeit am Produktgemisch wächst mit steigender Reaktionstemperatur, die verkürzte Reaktionszeit bedingt, außerdem beim Wechsel des Reaktionsmediums Pentan/ Benzol. 3 kann destillativ vollständig von 1 abgetrennt werden.

Die Produkte der Amalgamreaktion lassen sich zwanglos deuten, wenn man intermediär das Auftreten übergangsmetallierter Silylradikale annimmt. Diese können aus dem Zerfall einer primär gebildeten Silylquecksilberverbindung hervorgehen und stabilisieren sich entweder durch Wasserstoffabstraktion vom Solvens oder erfahren nach weiterer Reduktion Fragmentierung zum Eisen-Anion, das den Ausgangskomplex in der erwähnten Weise nucleophil attackiert (Weg 3a).

Wichtige Hinweise für diese Formulierung liefert die als alternativer Zugang zu den gewünschten Quecksilbersystemen gedachte Umsetzung von Bis(trimethylsilyl)quecksilber mit $C_5H_5(CO)_2Fe-SiH(CH_3)Cl$, bei der neben elementarem Quecksilber, Chlor-trimethylsilan, geringen Mengen an $[C_5H_5(CO)_2Fe]_2$ und $C_5H_5(CO)_2FeCl$, **3** als einzige Silicium-Metallverbindung erhalten wird. Infolge Abwesenheit von reduzierendem Agens wird nun nach dem Zerfall nur noch der Abstraktionsschritt realisiert (Weg 3b).

Die kristallinen Zweikernkomplexe 1 (orangegelb) und 2 (dottergelb) sind unter N_2 -Atmosphäre und Lichtausschluß längere Zeit unzersetzt haltbar. Sie sind in offen-

kettigen und cyclischen Kohlenwasserstoffen gut, in Toluol und Benzol sehr gut löslich. In Donorsolventien z. B. THF wird allmähliche Zersetzung unter Spaltung der Fe-Si-Bindung beobachtet, in chlorierten Alkanen ein rascher Austausch des Si-ständigen Wasserstoffs.

Zur präparativen Durchführung dieses Austausches eignet sich besonders CCl_4 , da es 1 und 2 bereits unter sehr milden Bedingungen chloriert und eine einfache Verfolgung der Umwandlung durch ¹H-NMR-Spektroskopie erlaubt.

$$1 \text{ bzw. } 2 + \text{CCl}_4 \longrightarrow \begin{array}{c} \text{Cl} & \text{Si} \\ \text{C}_5\text{H}_5(\text{CO})_2\text{Fe} & \text{Fe}(\text{CO})_2\text{C}_5\text{H}_5 \end{array} + \text{CHCl}_3 \qquad (4)$$

$$4: \text{R} = \text{CH}_3$$

$$5: \text{R} = \text{Cl}$$

1 wird hierbei rascher substituiert als 2, womit sich die gleiche Abhängigkeit des Austauschvermögens von der Natur der Nichtmetalliganden findet wie in der Monometallreihe⁵⁾. Entsprechend ihrem extrem hydridischen Charakter (vgl. Spektroskopische Untersuchungen) werden die Bismetallsilane generell unter wesentlich milderen Bedingungen chloriert (Benzol/25°C/5fach molarer Überschuß an CCl₄) als monometallierte Silane (reines CCl₄/60°C). Der früher von uns diskutierte Verlauf dieses Prozesses nach einem Radikalkettenmechanismus dürfte auch für (4) gültig sein⁵⁾.

Eine Variante des H/Cl-Austausches ist für das bei der Einwirkung von überschüssigem CH_3SiHCl_2 auf $Na[Fe(CO)_2C_5H_5]$ (in Cyclohexan bei 25°C) beobachtete Bismetallchlorsilan 4 verantwortlich, das nach destillativer Abtrennung des Hauptprodukts $C_5H_5(CO)_2Fe-SiH(CH_3)Cl$ als Rückstand verbleibt. Als austauschendes Agens gegenüber primär gebildetem 1 fungiert nun das überschüssige Dichlorsilan. Zweites Produkt ist CH_3SiH_2Cl , das IR-spektroskopisch (vSiH = 2200 cm⁻¹) leicht identifizierbar ist.

$$CH_{3}SiHCl_{2} + 2 Na[Fe(CO)_{2}C_{5}H_{5}] \longrightarrow 1 + 2 NaCl$$
(5)

1 +
$$CH_3SiHCl_2$$
 \longrightarrow 4 + CH_3SiH_2Cl (6)

Versuche, nach analogem Muster Fluor am Si-Atom einzuführen, verlaufen weit weniger einheitlich. Fluorierung unter Erhalt des Molekülgerüstes gelingt nur mit 1 und Trityltetrafluoroborat als Fluorierungsagens, wobei das Bismetallfluorsilan 6 in geringer Menge neben dem Monometallderivat 7 und nicht charakterisierbaren Zersetzungsprodukten entsteht. Dem Austausch schließt sich demnach die Abspaltung einer Übergangsmetallgruppierung an, für die das freiwerdende BF₃ verantwortlich sein dürfte.

Die Formulierung des "BF₂-Komplexes" als zweites Spaltprodukt erfolgt aus rein stöchiometrischen Gesichtspunkten. Versuche, diese Spezies in (7) wenigstens spektroskopisch nachzuweisen oder aber gezielt zu synthetisieren, waren bislang ohne Erfolg.

Verwendet man AgBF₄ als fluorierendes Agens, so läßt sich die Reaktion selbst bei entsprechender Variation der Reaktionsparameter (hohe Verdünnung, 8°C) nicht einmal mehr teilweise auf der Austauschstufe 6 halten, sondern läuft sofort bis zum Monometalldifluorsilan 7 durch. Spaltendes Agens ist nun, wie auch früher bei entsprechenden Studien an Monometallsilanen nachgewiesen¹⁴⁾, der in einer Redoxreaktion nach Gl. (8) entstehende Fluorwasserstoff.

Eisenhydrid wird unter den Reaktionsbedingungen in $[C_5H_5(CO)_2Fe]_2$ umgewandelt und als solches isoliert.

Aufgrund dieser Befunde empfiehlt sich zur Gewinnung fluorierter Bismetallsilane der Umweg über die Chlorhomologen 4 und 5, die in Gegenwart von $AgBF_4$ in benzolischem Medium einem raschen Cl/F-Austausch unterliegen.

4 bzw. 5 + n AgBF₄
$$\longrightarrow$$
 6 bzw. C₅H₅(CO)₂Fe Si Fe(CO)₂C₅H₅ + n BF₃ (10)
n = 1,2 8 + n AgCl

Befriedigende Ausbeuten werden erhalten, wenn man den Austausch in extrem verdünnter Lösung vornimmt und durch erhöhte Reaktionstemperaturen (70°C) für ein rasches Entweichen des freiwerdenden BF₃ aus dem Reaktionsgemisch sorgt.

Bei dieser Art der Reaktionsführung läßt sich die in (7) formulierte BF_3 -Fragmentierung im Falle von 4 bis auf 30% zurückdrängen, bei 5 sogar völlig unterdrücken. Diese Abstufung versteht sich aufgrund der Tatsache, daß Metall-Silicium-Einheiten mit steigender Halogensubstitution am Silicium gegenüber einer elektrophilen Spaltung zunehmend weniger anfällig werden¹⁴⁾. Die Bismetallhalogensilane 4–6 und 8 stellen orange- bis blaßgelbe kristalline Festsubstanzen dar, die sich unter Licht- und Luftausschluß unbegrenzt aufbewahren lassen. Ihre Löslichkeit in unpolaren Solventien ist gegenüber 1 und 2 deutlich reduziert und sinkt mit zunehmendem Halogenierungsgrad. 6 und 8 sind z. B. in Pentan völlig unlöslich.

Spektroskopische Untersuchungen

Zur Charakterisierung und Konstitutionsermittlung der neu hergestellten Si-verbrückten Zweikernkomplexe wurden die Massen-, IR-, ¹H-, ¹⁹F-, ¹³C-NMR- und soweit möglich die ²⁹Si-NMR-Spektren herangezogen, deren Daten in den Tabellen 1-3 zusammengestellt sind. Zum besseren Vergleich sind in Tab. 2 außerdem die ¹³C- und ²⁹Si-NMR-Daten der monometallierten Komplexe $C_5H_5(CO)_2Fe-SiH(CH_3)Cl$ und $C_5H_5(CO)_2Fe-Si(CH_3)F_2$ mitaufgenommen.

Kom- plex	δC₅H₅	¹ H-NMR ^{a)} δCH ₃	δHSi		vC	IR-Daten CO	b)	vSiH	
1	4.37 (s, 10 H)	1.14 (d, 3H) ${}^{3}J_{HCSiH} = 3.6$	5.46 (q, 1 H)	1990 (sst)	1952 (st)	1943 (st)	1935 (m)	2025 (s)	
2	4.42 (s, 10 H)		6.89 (s, 1 H)	2008 (Sch)	1998 (st)	1965 (sst)	1946 (m)	2044 (s)	
3	4.07 (s, 5 H)	0.60 (t, 3 H) ${}^{3}J_{HCSiH} = 4.4$	4.71 (q, 1 H)	2000 (sst)	1953 (sst)			2078 (s)	
4	4.37 (s, 10 H)	1.59 (s, 3 H)		2010 (m) 1958 (m)	1998 (st) 1945 (m)	1992 (m)	1966 (s)		
5	4.43 (s)		δ ¹⁹ F ^{a)}	2025 (m) 1962 (m)	2007 (m) 1951 (m)	2000 (st)	1974 (m)		
6	4.40 (s, 10 H)	1.37 (d, 3 H) ${}^{3}J_{HCSiF} = 7.8$	- 89.1	2008 (sst) 1945 (m)	1991 (s, Sch) 1937 (m)	1987 (st)	1956 (st)		
8	4.43 (s)		- 36.2	2022 (st) 1964 (st)	2010 (s, Sch) 1941 (st)	1998 (st)	1975 (m)		

Tab. 1. ¹H-, ¹⁹F-{¹H}-NMR- und IR-Daten der Silicium-Metallkomplexe 1-6 und 8

^{a)} In C₆H₆ außer 2 (C₆D₆); chemische Verschiebungen (δ-Werte) rel. TMS int. (CFCl₃ ext.); Kopplungskonstanten in Hz.

^{b)} 1-3, 6, 8 in Cyclohexan, 4 in Pentan, 5 in CCl₄; 0.1-mm-NaCl-Flüssigkeitsküvetten (komp.); Polystyroleichung (1601.4 cm⁻¹).

NMR-Spektren

Die ¹*H-NMR-Spektren* der Komplexe 1–6 und 8 zeigen die erwartete Anzahl von Signalen im theoretischen Intensitätsverhältnis und lassen sich ausnahmslos nach erster Ordnung zuordnen und analysieren. Die Absorption der magnetisch äquivalenten Cyclopentadienylprotonen findet sich für alle Bismetallderivate mit nahezu identischem Verschiebungswert und ist demnach nicht wie sonst mit charakteristischen Größen der nichtmetallischen Siliciumliganden (Elektronegativität, Taftsche Induktivitätskonstante) korrelierbar ⁵⁾. Veränderungen, die sich auf dieser Basis verstehen lassen, sind aber für die HSi- bzw. H₃C-Resonanzen gegeben, die beim Ersatz CH₃/Cl bzw. H/Cl(F) wie erwartet eine deutliche Tieffeldverschiebung erfahren. Wertvolle Hinweise über die elektronischen Verhältnisse in den Bismetallsilanen ergeben sich aus der Kopplungskonstante J_{HSi} , die in erster Linie vom Fermi-Kontakt-Term bestimmt wird ¹⁵⁾. Der extrem kleine Betrag dieser Größe für 1 und 2, vor allem auch im Vergleich zu monometallierten Übergangsmetallsilanen zeigt einen geringen s-Charakter für die Si–H-Bindung an, der sich nach der *Bent*schen Regel¹⁶⁾ zwanglos aus der Anwesenheit von zwei stark elektropositiven Übergangsmetalleinheiten erklärt. W. Malisch und W. Ries

Gemäß den ¹⁹F-NMR-Verschiebungswerten von 6 und 8 verstärkt sich der bereits bei den Monometallfluorsilanen registrierte Effekt einer drastischen Tieffeldverschiebung infolge Übergangsmetallierung des Siliciumatoms. Verschiebungsdifferenzen, die auf den unterschiedlichen Fluorierungsgrad zurückzuführen sind, stellen sich in der Bismetallreihe wesentlich ausgeprägter dar. Keinerlei Abhängigkeit vom Metallierungsgrad zeigen dagegen ³J_{HCSiF} und J_{SiF}, die z. B. für 6 und C₅H₅(CO)₂Fe-Si(CH₃)F₂ nahezu identisch sind.

		²⁹ Si-NMR			
Komplex	$\delta C_5 H_5$	δCH3	$\delta_1 CO$	δ₂CO	δSi
Komptex		${}^{2}J_{{}^{13}CSi^{19}F}$			$J_{^{1}\mathrm{H}^{29}\mathrm{Si}}$ bzw. $J_{^{19}\mathrm{F}}$ si
1	84.33	11.99	216.52	216.65	62.85 166
2	85.31		214.83	215.13	110.72 180
4	85.31	23.62	215.78	215.87	142.00
5	86.09		214	4.35	146.65
6	84.40	21.64 9	216.00	216.13	381 ^{b)}
(Fe) – SiH(CH ₃)Cl	84.51	9.14	213.39	213.43	65.90 203
$(Fe) - Si(CH_3)F_2$	83.40	8.80 14	212	2.65	68.29 365

Tab. 2. 13C	$-{^1H}-und$	²⁹ Si-{ ¹ H}-NMR	-Spektren der	Komplexe 1,	2, 4-6,
C	p(CO) ₂ Fe-	SiH(CH ₃)Cl und	Cp(CO) ₂ Fe-	$-\operatorname{Si}(\operatorname{CH}_3)\operatorname{F}_2^{a}$	

^{a)} Gemessen in C_6D_6 ; chemische Verschiebungen (δ -Werte) zu niederen Feldstärken, relativ TMS int.; Kopplungskonstanten in Hz.

^{b)} Entnommen dem ¹⁹F-{¹H}-NMR-Spektrum.

Die in den ¹³C-NMR-Spektren der Komplexe **1**–6 und **8** beobachteten Verschiebungen der Cyclopentadienyl-, Carbonyl- und Methylkohlenstoffatome liegen im Erwartungsbereich ¹⁷). Gegenüber C₅H₅(CO)₂Fe-SiH(CH₃)Cl verschieben sich δ CO und δ CH₃ der vergleichbaren Bismetallsilane **1**, **4** und **6** nur geringfügig zu niederem Feld. Aus den δ C₅H₅-Werten leitet sich ab, daß auch die Kohlenstoffatome der Cyclopentadienyleinheit nicht auf einen Substituentenwechsel am Siliciumatom ansprechen.

Bemerkenswert und bei der ¹³C-NMR-spektroskopischen Untersuchung $C_5H_5(CO)_2$ Fesubstituierter Hauptgruppenelementsysteme bislang unbeobachtet, ist das Auftreten von zwei ¹³C-NMR-Absorptionen für die Kohlenmonoxidliganden der Übergangsmetalleinheit in den Komplexen 1, 2, 4 und 6. In diesen Fällen weist das Gesamtmolekül weder eine Spiegelebene noch eine C_2 -Achse bezüglich der Bindungsanordnung OC-Fe-CO auf¹⁸, so daß der prochirale Charakter der Cp(CO)₂Fe-Gruppe sich NMR-spektroskopisch dokumentiert.

Wie aus den Newman-Projektionen der höchstwahrscheinlich bevorzugten Konformeren hervorgeht (in der Abb. ist eine $Cp(CO)_2$ Fe-Gruppe dargestellt, die zweite fungiert als Ligand), befinden sich die CO-Liganden der metallischen Gruppe in unterschiedlicher chemischer Umgebung, die auch bei gleichartiger Population der Rotameren oder einer schnellen Rotation um die Fe-Si-Bindung erhalten bleibt. Im Einklang mit dieser Vorstellung sind auch in $C_5H_5(CO)_2Fe-SiH(CH_3)Cl$ die CO-Gruppen diastereotop; für den SiCl₂-Vertreter 5, der die angesprochenen Symmetrieelemente besitzt, wird dagegen nur ein einziges Signal registriert.

Abb. Newman-Projektionen der bevorzugten Konformeren der Silicium-Metallkomplexe 1, 2, 4, 6 und $C_3H_3(CO)_2Fe-SiH(CH_3)Cl$

Tab. 2 enthält die ersten ²⁹Si-NMR-Daten übergangsmetallierter Siliciumverbindungen. Auffallend ist die durchwegs extreme Tieffeldlage der ²⁹Si-Resonanz, die bei den chlorierten Derivaten 4 und 5 in einen in der ²⁹Si-NMR-Spektroskopie unbekannten Verschiebungsbereich führt¹⁹. Ohne Erfolg ist, wie bereits mehrfach an Si-Systemen festgestellt, auch hier der Versuch, von δ Si auf den elektronischen Charakter des Siliciumatoms rückzuschließen. So wirkt sich ausgehend von 1 der Ersatz der Übergangsmetalleinheit durch Chlor praktisch nicht auf die chemische Verschiebung aus, während der Austausch von CH₃ und H gegen Chlor eine Tieffeldverschiebung bis zu 90 ppm nach sich zieht.

Neuere theoretische Arbeiten erklären solche unerwarteten Veränderungen mit der Tatsache, daß δ^{29} Si in der Hauptsache durch den lokalen paramagnetischen Term bestimmt wird²⁰⁻²²⁾. Berücksichtigt man dessen umgekehrte Proportionalität zur Hauptanregungsenergie, dann läßt sich verstehen, warum gerade bei einer Übergangsmetallsubstitution die ²⁹Si-Resonanz bei äußerst tiefem Feld auftritt. In diesem speziellen Fall kann nämlich davon ausgegangen werden, daß eine Reihe energetisch tiefliegender p- und d-Zustände des Übergangsmetalls für den Anregungsprozeß zur Verfügung stehen²³⁾.

IR-Spektren

Die vSiH-Werte von übergangsmetallierten Hydrogensilanen finden sich als Folge des elektropositiven Charakters der Metallatome bei sehr niederen Wellenzahlen. Dieser Effekt ist verständlicherweise bei Bismetallderivaten wie 1 und 2 besonders ausgeprägt, die die niedersten bisher an neutralen Si-H-Verbindungen nachgewiesenen SiH-Frequenzen zeigen. Für den Si-ständigen Wasserstoff leitet sich hieraus ein stark hydridischer Charakter ab²⁴⁾, der auch chemisch belegt ist.

Legt man bei den in Lösung vermessenen vCO-Absorptionsbanden der beschriebenen Bismetallsilane die bei entsprechenden Zinn- und Germaniumderivaten anhand der Zahl und der Intensitätsverhältnisse der Carbonylvalenzschwingungsbanden getroffenen Aussagen zur Molekülstruktur zugrunde²⁵⁾, dann läßt sich für 1 C_1 -Symmetrie postulieren (4 Absorptionen mit monoton abnehmender Energie). Bei den restlichen Zweikernspezies muß aus der andersartigen Intensitätsverteilung (4) bzw. aus dem Auftreten von sechs vCO-Banden auf das Vorliegen unterschiedlicher konformativer Anordnungen geschlossen werden (vgl. hierzu die Abb.), deren Existenz sich aus einer gehinderten Drehbarkeit um die Eisen-Siliciumbindungen erklärt. Voraussetzung für eine IR-spektroskopische Erfaßbarkeit dieses Phänomens unter den angewandten Bedingungen (Cyclohexan bzw. CCl₄, 25 °C) ist die Anwesenheit eines Halogenatoms am Silicium^{1,5,6,14,26,27)}. vCO zeigt sich stark abhängig von der Natur der Nichtmetalliganden und fällt in der Reihe Cl₂ \approx F₂ > CH₃, Cl \approx CH₃, F \approx H, Cl > CH₃, H kontinuierlich ab.

Massenspektren

Beim elektronenstoßinduzierten Zerfall zeigen die Komplexe 1-6 und 8 ein einheitliches Verhalten. Als Peak höchster Massenzahl findet sich stets das Molekülion. Der Abbau wird bestimmt durch den für Metallcarbonylderivate charakteristischen sukzessiven Verlust sämtlicher CO-Gruppen, dem sich im Falle von 1 zunächst die Eliminierung von zwei H₂-Molekülen und erst dann die einer Übergangsmetalleinheit (C₅H₅Fe) anschließt (vgl. Tab. 3). Dieser Fragmentierungsfolge kann auch, allerdings nur sehr stark untergeordnet, der Ausstoß eines CH₃-Radikals (1, 6) bzw. Halogenatoms (2, 4, 5, 8) vorangehen. In jedem Fall beobachtet man eine verhältnismäßig hohe Anteiligkeit von Ionen mit zwei Metallatomen am Gesamtionenstrom (1; M₂⁺: M⁺ \approx 35.4% : 65.6%).

Fragment	Masse	rel. Int.	Fragment	Masse	rel. Int.
Cp ₂ (CO) ₄ Fe ₂ SiHCH ₃ ⁺	398	1.2	Cp ₂ Fe ₂ SiH ⁺	271	2.5
$Cp_2(CO)_4Fe_2SiH^+$	383	0.8	$Cp_2FeSiCH_2^+$	228	72
$Cp_2(CO)_3Fe_2SiHCH_3^+$	370	53	$Cp(CO)_2FeSiHCH_3^+$	221	86
$Cp_2(CO)_3Fe_2SiH^+$	355	0.7	CpCOFeSiHCH ₃ ⁺	193	46
$Cp_2(CO)_2Fe_2SiHCH_3^+$	342	31.5	Cp_2Fe^+	186	41
$Cp_2(CO)_2Fe_2SiH^+$	327	0.5	$Cp(CO)_2Fe^+$	177	5
Cp ₂ COFe ₂ SiHCH ⁺ ₃	314	27	CpFeSiHCH ₃ ⁺	165	36
$Cp_2COFe_2SiH^+$	299	0.8	CpCOFe ⁺	149	11
$Cp_2Fe_2SiHCH_3^+$	286	100	CpFe ⁺	121	70
$Cp_2Fe_2SiCH_2^+$	284	8	CpSi ⁺	93	66
$Cp_2Fe_2SiC^+$	282	11	-		

Tab. 3. Massenspektrum von 1 (70 eV, 40 °C)^{a)}

^{a)} Massenzahlen bezogen auf die Isotopen größter Häufigkeit: ³⁵Cl, ⁵⁶Fe.

Unser Dank gilt Herrn Dr. N. Pelz für die Aufnahme der Massenspektren, Herrn Dr. W. Buchner und Herrn C. P. Kneis für die Vermessung der ¹³C-, ¹⁹F- und ²⁹Si-NMR-Spektren sowie Frau E. Ulrich für die Durchführung der analytischen Bestimmungen. Die Untersuchungen wurden in dankenswerter Weise von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie sowie durch Chemikalienspenden der Fa. Bayer AG, Leverkusen, unterstützt.

Experimenteller Teil

Alle Arbeiten wurden unter Luft- und Feuchtigkeitsausschluß in einer Atmosphäre von getrocknetem und gereinigtem Stickstoff durchgeführt. Alle Lösungsmittel waren getrocknet und N_2 -gesättigt.

IR-Spektren: Gitterspektrometer Perkin-Elmer, Modell 457 bzw. 283. – ¹H-NMR-Spektren: Varian T 60. – ¹⁹F-NMR-Spektren: Varian XL 100/15 bei 94.1 MHz. – ¹³C- und ²⁹Si-NMR-Spektren: Bruker WH 90 bei 26.636 bzw. 17.866 MHz (Fourier-Transform). – Massenspektren: Varian MAT SM 1-BH. – Schmelzpunkte: Cu-Block (geschlossene Kapillare).– Hg[Si(CH₃)₃]²⁸⁹, $Na[Fe(CO)_2Cp]^{29.30}$ und die Siliciumkomplexe $Cp(CO)_2Fe-SiH(CH_3)Cl, Cp(CO)_2Fe-SiHCl_2^{3}$ wurden nach Literaturvorschriften dargestellt.

Bis[dicarbonyl(η^5 -cyclopentadienyl)ferrio]hydrogenmethylsilan (1): Eine Lösung von 1570 mg (6.12 mmol) Cp(CO)₂Fe – SiH(CH₃)Cl in 50 ml Methylcyclohexan wird mit 1576 mg (7.88 mmol) trockenem, fein pulverisiertem Na[Fe(CO)₂Cp] versetzt und das heterogene Reaktionsgemisch im verschlossenen Kolben unter Lichtausschluß 6d bei 25 °C gerührt. Nach Abfritten der unlöslichen Bestandteile (NaCl und unumgesetztes Metallat) wird das klare Filtrat i. Vak. zur Trockne gebracht und der feste Rückstand mehrmals mit Pentan extrahiert. Ausfrieren bei –78 °C liefert 1430 mg (59%) kristallines 1, das abfiltriert und i. Hochvak. getrocknet wird.

 $Chlorbis[dicarbonyl(\eta^{5}-cyclopentadienyl)] ferrio]hydrogensilan (2): 1269 mg (4.58 mmol) Cp(CO)_{2}Fe - SiHCl_{2} und 1200 mg (6.00 mmol) Na[Fe(CO)_{2}Cp] ergeben in 150 ml Cyclohexan nach 4tägigem Rühren bei 25°C, Extraktion des Rohproduktes mit Methylcyclohexan und Ausfrieren bei - 78°C 845 mg (44%)$ **2**.

Darstellung von 1 durch Umsetzung von $C_5H_5(CO)_2Fe-SiH(CH_3)Cl$ mit Natriumamalgam: Zu der in Tab. 4 angegebenen Menge des Komplexes $Cp(CO)_2Fe-SiH(CH_3)Cl$, gelöst in Pentan (Benzol), wird ein ca. 5molarer Überschuß einer 1 proz. Natriumamalgam-Lösung gegeben und die Reaktionsmischung bei Raumtemp. gerührt. Nach vollständigem Umsatz (IR-spektroskopische Kontrolle) wird von unumgesetztem Natriumamalgam und festen Reaktionsanteilen abgefrittet und das Solvens i. Vak. abgezogen. Aus dem Rückstand wird zunächst [Dicarbonyl(η^5 -cyclopentadienyl)ferrio]dihydrogenmethylsilan (3) durch Destillation (60°C/10⁻² Torr) abgetrennt, anschließend 1 wie vorstehend beschrieben gewonnen.

Tab. 4. Ansätze, Reaktionsbedingungen und Produktausbeuten bei der Reaktion von $Cp(CO)_2Fe-SiH(CH_3)Cl$ mit Natriumamalgam

Cp(CO) ₂ Fe- SiH(CH ₃)Cl	Na/Hg	Solvens	Reak zeit	tions- temp.	Produktausbeuten ^a 3 1	
mg (mmol)	mg (mmol)/g	(ml)	d	°C	mg	(%)
360 (1.40)	160 (6.95)/16	Pentan (50)	3	25	96 (31)	107 (38)
670 (2.61)	300 (13.05)/30	Pentan (30)	0.5	40	128 (22)	82 (16)
168 (0.66)	90 (3.91)/ 9	Benzol (30)	6	25	35 (24)	68 (52)

^{a)} Bezogen auf eingesetztes $Cp(CO)_2Fe - SiH(CH_3)Cl$.

Umsetzung von $Cp(CO)_2Fe-SiH(CH_3)Cl$ mit Bis(trimethylsilyl)quecksilber: 200 mg (0.77 mmol) $Cp(CO)_2Fe-SiH(CH_3)Cl$ und 270 mg (0.78 mmol) bzw. 135 mg (0.39 mmol) Bis(trimethylsilyl)quecksilber werden in 20 ml n-Hexan bzw. Pentan vereinigt und 4 d bei 25 °C gerührt. Es wird von ausgefallenem Quecksilber abgefrittet, Solvens und spektroskopisch nachgewiesenes (CH₃)₃SiCl werden i. Vak. entfernt und 3 durch Destillation isoliert. Ausb. 34 mg (20%) bzw. 22 mg (25%). Im Rückstand läßt sich IR-spektroskopisch [Cp(CO)₂Fe]₂ und Cp(CO)₂FeCl feststellen.

Chlor[dicarbonyl(η^5 -cyclopentadienyl)ferrio]methylsilan (4) und Dichlorbis[dicarbonyl(η^5 -cyclopentadienyl)ferrio]silan (5): 168 mg (0.42 mmol) 1 [533 mg (1.27 mmol) 2] werden in ca. 5 (25) ml CCl₄ aufgeschlämmt und 60 (35) min bei Raumtemp. intensiv gerührt. Danach wird i. Vak. bis zur Trockne eingedampft und der feste Rückstand mit einem Gemisch aus Methylcyclohexan und Toluol (10:1) mehrfach ausgezogen. Bei -78 °C werden aus den vereinigten Extrakten 157 mg (86%) 4 [352 mg (61%) 5] ausgefroren, die abfiltriert, mit kaltem Pentan gewaschen und i. Vak. getrocknet werden.

Bildung von 4 bei der Reaktion von $Na[Fe(CO)_2Cp]$ mit CH_3SiHCl_2 : Eine Suspension von 4.32 g (21.6 mmol) $Na[Fe(CO)_2Cp]$ in 100 ml Cyclohexan wird mit überschüssigem CH_3SiHCl_2 versetzt [5.50 g (47.8 mmol)] und 8 d bei Raumtemp. gerührt. Es wird von Unlöslichem abfiltriert, Solvens und überschüssiges Reagens werden i. Vak. entfernt und $Cp(CO)_2Fe-SiH(CH_3)Cl$ durch Destillation bei 80 – 82 °C (10⁻² Torr) abgetrennt. Aus dem Destillationsrückstand werden 1110 mg (24%) 4 wie vorstehend beschrieben gewonnen.

Tab. 5. Ansätze, Reaktionsbedingungen und Produktausbeuten bei der Fluorierung der Bismetallsilane 4 und 5

Bismetallsilan mg (mmol)	AgBF₄ mg (mmol)	Benzol ml	Reak zeit h	tions- temp. °C	Proc mg	lukte (%)
4 119 (0.28)	54 (0.28)	10	24	25	6 51 (72)	7 21 (18)
4 157 (0.36)	71 (0.36)	80	4	70	6 66 (43)	7 27 (28)
5 123 (0.28)	54 (0.28)	80	4	70	8 87 (74)	

Tab. 6. Schmelzpunkte, Summenformeln, Molmassen und analytische Daten der Silicium-Eisenkomplexe 1-6 und 8

Komplex	Farbe	Summenformel (Molmasse) ^{a)}	Analyse
•	Schip. (C)	Ber. Gef.	С Н
1	orangegelb 89 – 90	$\begin{array}{c} C_{15}H_{14}Fe_{2}O_{4}Si\\ 398.0 & 398 \end{array}$	Ber. 45.26 3.55 Gef. 44.91 3.66
2	dottergelb 97–99	C ₁₄ H ₁₁ ClFe ₂ O ₄ Si 418.5 417	Ber. 40.18 2.65 Gef. 39.33 2.76
3	orangegelb -23	$C_8H_{10}FeO_2Si$ 222.1 222	Ber. 43.26 4.54 Gef. 42.75 4.76
4	hellgelb 155 – 156	C ₁₅ H ₁₃ ClFe ₂ O ₄ Si 432.5 432	Ber. 41.66 3.03 Gef. 40.50 3.05
5	hellgelb 185 – 187	$C_{14}H_{10}Cl_2Fe_2O_4Si_{452.9}$ 452	Ber. 37.13 2.23 Gef. 36.93 2.32
6	rotorange 106 – 108	C ₁₅ H ₁₃ FFe ₂ O ₄ Si 416.0 416	Ber. 43.30 3.15 Gef. 42.91 3.28
8	hellgelb 153–155	$\begin{array}{c} C_{14}H_{10}F_{2}Fe_{2}O_{4}Si\\ 420.0 & 420 \end{array}$	Ber. 40.04 2.40 Gef. 39.58 2.70

^{a)} Massenspektroskopisch bestimmt, bezogen auf ³⁵Cl und ⁵⁶Fe.

Bis[dicarbonyl(η^5 -cyclopentadienyl)ferrio]fluormethylsilan (6) durch Umsetzung von 1 mit Trityl-tetrafluoroborat: 360 mg (0.90 mmol) 1 und 408 mg (1.24 mmol) Trityl-tetrafluoroborat werden in Benzol 1 h bei 25 °C gerührt. Danach wird von unlöslichen Zersetzungsprodukten abgefrittet, das Solvens i. Vak. abgezogen und aus dem Rückstand mit 5 ml Pentan 65 mg (28%) flüssiges $Cp(CO)_2Fe - Si(CH_3)F_2$ (7) extrahiert. Der verbleibende Festkörper liefert nach Umkristallisieren aus Methylcyclohexan 40 mg (11%) reines 6 (Aufarbeitung A).

Umsetzung von 1 mit $AgBF_4$: Zu einer Lösung von 162 mg (0.41 mmol) 1 in 15 ml Benzol wird unter Rühren langsam etwas mehr als die doppeltmolare Menge AgBF₄ gegeben [185 mg (0.95 mmol)]. Unter BF₃-Entwicklung erfolgt zunehmende Rotfärbung der Lösung, während sich gleichzeitig elementares Silber in Form eines Spiegels an der Glaswand niederschlägt. Nach 12 h wird von Unlöslichem abgefrittet, das Solvens i. Vak. abgezogen und 7 [82 mg (43%)] durch Extraktion mit 5 ml Pentan von $[C_5H_5(CO)_2Fe]_2$ [65 mg (45%)] getrennt.

6 und Bis[dicarbonyl(η^5 -cyclopentadienyl)ferrio]difluorsilan (8) nach dem AgBF₄-Verfahren: In eine benzolische Lösung von 4 bzw. 5 wird bei Raumtemp. unter kräftigem Rühren portionsweise die berechnete Menge an AgBF₄ eingetragen und das Gemisch zu den in Tab. 5 angegebenen Bedingungen behandelt. Entstehendes BF₃ wird in einem raschen N₂-Strom aus dem Reaktionsraum entfernt. Nach beendetem Austausch (NMR-spektroskopische Kontrolle) werden das ausgefallene AgCl und unlösliche Zersetzungsprodukte abgefrittet und das klare hellgelbe Filtrat i. Vak. bis zur Trockne bzw. bis auf 2 ml eingedampft (Aufarbeitung A bzw. B).

A: s. oben. B: In Form hellgelber Kristalle anfallendes 8 wird abgefrittet, zweimal mit je 2 ml kaltem Pentan gewaschen und i. Vak. getrocknet.

Literatur

- ¹⁾ XI. Mitteil.: W. Malisch und P. Panster, Chem. Ber. 108, 2554 (1975).
- ²⁾ C. S. Cundy, B. M. Kingston und M. F. Lappert, Adv. Organomet. Chem. 11, 253 (1973).
- ³⁾ H. G. Ang und P. T. Lau, J. Organomet. Chem. Rev. A 8, 235 (1972).
- 4) F. Höfler, Fortschr. Chem. Forsch. 50, 129 (1974).
- ⁵⁾ W. Malisch und M. Kuhn, Chem. Ber. 107, 979, 2835 (1974).
- ⁶⁾ W. Malisch, J. Organomet. Chem. 82, 185 (1974).
- ⁷⁾ B. J. Aylett und I. M. Campbell, J. Chem. Soc. A 1969, 1910.
- ⁸⁾ K. M. Abraham und G. Urry, Inorg. Chem. 12, 2850 (1973).
- ⁹⁾ G. Hencken und E. Weiss, Chem. Ber. 106, 1747 (1973).
- ¹⁰⁾ Inzwischen wurde das Silan H₂Si[Fe(CO)₂C₅H₅]₂ synthetisiert; vgl. B. J. Aylett und H. M. Colquhoun, J. Chem. Res. (S) 1, 148 (1977).
- ¹¹⁾ R. É. Desey, R. L. Pohl und R. B. King, J. Am. Chem. Soc. 88, 5121 (1966).
- ¹²⁾ C. H. Van Dyke, Organometallic Compounds of Group IV Elements (A. G. McDiarmid, Herausgeber), Marcel Dekker Inc., New York 1972.
- ¹³⁾ K. H. Pannell und D. Jackson, J. Am. Chem. Soc. 98, 443 (1976).
- ¹⁴⁾ W. Malisch, Chem. Ber. 107, 3835 (1974).
- ¹⁵⁾ R. Ditchfild, M. A. Jensen und J. N. Murell, J. Chem. Soc. A 1967, 1674.
- ¹⁶⁾ H. A. Bent, Chem. Rev. 61, 275 (1961).
- ¹⁷⁾ B. E. Mann, Adv. Organomet. Chem. 12, 135 (1974).
- ¹⁸⁾ H. Günther, NMR-Spektroskopie, Georg Thieme Verlag, Stuttgart 1973.
- ¹⁹⁾ J. Schraml und J. M. Bellama, Determination of Organic Structures by Physical Methods, Bd. 6, Academic Press, New York 1976.
- ²⁰⁾ C. R. Ernst, L. Spialter, G. R. Buell und D. L. Wilhite, J. Am. Chem. Soc. 96, 5375 (1974).
- ²¹⁾ G. Engelhardt, R. Radeglia, H. Jancke, E. Lippmace und M. Magi, Org. Magn. Reson. 5, 561 (1973).
- ²²⁾ F. F. Roelandt, D. F. van de Vondel und E. V. van den Berghe, J. Organomet. Chem. 94, 377 (1975).
- ²³⁾ H. J. Keller, NMR Basic Principles and Progress, Bd. 2 (P. Diehl, E. Fluck und R. Kosfeld, Herausgeber), Springer Verlag, Berlin-Heidelberg-New York 1976.
- ²⁴⁾ C. J. Attridge, J. Organomet. Chem. 13, 259 (1968).
- ²⁵⁾ N. Flitcroft, D.A. Harbourne, I. Paul, P. M. Tucker und F. G. A. Stone. J. Chem. Soc. A 1966, 1130.
- ²⁶⁾ W. Jetz und W. A. G. Graham, J. Am. Chem. Soc. 89, 2773 (1967).
- ²⁷⁾ J. Dalton, Inorg. Chem. 10, 1822 (1971).
- ²⁸⁾ A. G. Lee, J. Organomet. Chem. 16, 321 (1969).
- ²⁹⁾ E. O. Fischer und R. Böttcher, Z. Naturforsch., Teil B 10, 600 (1955).
- ³⁰⁾ T. S. Piper und G. Wilkinson, J. Inorg. Nucl. Chem. 3, 104 (1956).

[256/78]